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Abstract. We present in this paper a framework, RMOR, for monitoring the

execution of C programs against state machines, expressed in a textual (non-

graphical) format in files separate from the program. The state machine language

has been inspired by a graphical state machine language RCAT recently devel-

oped at the Jet Propulsion Laboratory, as an alternative to using Linear Temporal

Logic (LTL) for requirements capture. Transitions between states are labeled with

abstract event names and Boolean expressions over such. The abstract events are

connected to code fragments using an aspect-oriented pointcut language similar

to ASPECTJ’s or ASPECTC’s pointcut language. The system is implemented in

the C analysis and transformation package CIL, and is programmed in OCAML,

the implementation language of CIL. The work is closely related to the notion of

stateful aspects within aspect-oriented programming, where pointcut languages

are extended with temporal assertions over the execution trace.

1 Introduction

The field of program verification is concerned with the problem of determining whether

a program conforms to a specification. The pure verification problem consists of prov-

ing that all possible executions of the program conform to the specification. This is

in general undecidable. Runtime verification is a less ambitious, but more feasible ap-

proach, just attempting to prove conformance of a single execution wrt. a specification.

The specification can in this context be seen as a formalized oracle that can be used

during testing, or it can become part of a fault protection system that runs in tandem

with the program during its deployment, while triggering error correction code when

non-conformance to the specification is detected.

The paper presents the runtime verification framework, RMOR (Requirement Mon-

itoring and Recovery, pronounced ”armor”), for monitoring C programs against state

machines, using an aspect-oriented pointcut language to perform program instrumenta-

tion and connect the abstract events occurring in state machines with code fragments.

The work has been partly driven by the context of embedded systems for planetary

rovers and unmanned deep-space spacecraft as developed at NASA’s Jet Propulsion

Laboratory (JPL), where the majority of such code is written in C. The work presented

reflects the following four observations. First, state machines appear a natural notation

for programmers to apply, in contrast to for example temporal logic, or even regular

expressions. Regular expressions are likely the most attractive of the succinct notations,



but seem to be best suited for specifying “small” properties, whereas state machines

support “big” properties involving many states. Second, although graphical editors for

state machines are convenient, many programmers find textual programming-like no-

tations convenient. Third, program instrumentation should be automated, connecting

events to program points. Aspect-oriented programming has offered powerful pointcut

languages for expressing such instrumentation. Fourth, most runtime verfication envi-

ronments to date have been developed for Java, and C has been somewhat ignored. This

is unfortunate since a majority of embedded software is written in C.

The RMOR language has inspirations from several sources. The language supports

a notion of state machines directly influenced by RCAT (Requirement CApture Tool),

a graphical state machine language language and editor [24, 25]. That graphical state

machine language is inspired by Linear Temporal Logic (LTL) and allows for liveness

properties to be stated as well as safety properties. This is achieved by introducing

special error states and liveness states. RCAT was developed to support property spec-

ification for the SPIN model checker [17]1 and was together with RMOR products of

the Reliable Software Systems Development (RSSD) project, funded by NASA. Beyond

RCAT, another direct inspiration has been the STATL specification language [12], from

where a distinction between consuming and non-consuming transitions was borrowed (a

consuming transition leaves the source state, whereas a non-consuming leaves a ”token”

– does not consume the token – in the source state when the transition is taken). Finally

aspect-oriented programming, and specifically ASPECTJ [18] has strongly inspired the

pointcut language driving program instrumentation. More recently, ASPECTC [2] has

emerged as an aspect-oriented framework for C. This will be discussed further in Sec-

tion 7.

A considerable amount of research has been invested in program monitoring sys-

tems by different communities within the last 5-10 years. The runtime verification com-

munity is concerned with program correctness [10, 19, 13, 26, 11, 8]. This includes our

own work [15, 16, 4]. Most of these efforts investigate more or less powerful temporal

logics, with an exception in [11], which suggests the use of graphical UML state charts.

The aspect-oriented programming community is investigating what is referred to as

stateful aspects, where the pointcut language is extended with dynamic trace predicates

[9, 29, 7, 28, 1]. These pieces of work are often extensions of ASPECTJ [18]. TRACE-

MATHCES [1] for example is an extension of ASPECTJ with regular expressions. JASCO

[28] is a state machine solution for Java. An exception is ARACHNE [9], which per-

forms runtime weaving into binary code of C programs. ARACHNE supports a form of

trace predicates describing sequences of function calls, a limited form of regular ex-

pressions. The SLIC language [3] of the SLAM project is a specification language for

C much resembling an aspect-oriented programming language, but simplified to sup-

port static verification as well as monitoring. The language supports state variables as

well as access to function arguments and return values, but state machines have to be

encoded using enum types, and the event language is not as comprehensive as a gen-

eral purpose pointcut language. The program analysis communitiy has also contributed

1 RCAT automata are by the RCAT tool translated into Büchi automata. RMOR can specifically

monitor against such Büchi automata, although this is not the main purpose of the tool.



to this field [20] and the model checking community, which uses timed automata for

testing, including monitoring [27, 6].

Our contributions to these efforts are: (i) to suggest a simple and natural textual

programming notation for non-deterministic state machines integrated with an aspect-

oriented pointcut language for program monitoring. This includes adapting the notions

of error and live states from RCAT [24] for monitoring. With these concepts simple (fi-

nite trace) LTL properties can be stated naturally as state machines (the contribution of

[24]) and monitored (our contribution). (ii) To implement such a system for C. Most

embedded software is written in C. Most monitoring tools, however, have been focused

on Java. The implementation uses CIL [21], which turns out to be very suited for de-

veloping source code instrumentation and runtime monitoring frameworks for C. (iii)

To apply RMOR, resulting perhaps most importantly in feed-back from engineers wrt.

usability.

The paper is organized as follows. Section 2 gives an overview of the RMOR archi-

tecture. Section 3 presents through examples the RMOR specification language. Section

4 summarizes the grammar of the specification language. Section 5 describes imple-

mentation details, including principles of the C code that is generated, as well as how

the C code is instrumented. Section 6 presents case studies performed with RMOR.

Finally Section 7 contains conclusions and outlines future work.

Acknowledgements Thanks goes to researchers at JPL. Margaret Smith designed

the graphical RCAT language, which inspired the design of RMOR. Rajeev Joshi and

Matthew Bennett participated in case studies using versions of RMOR. Gerard Holz-

mann supported the project by funding it as part of NASA’s Reliable Software System

Development project2.

2 Overview of RMOR

The overall working of RMOR is illustrated in Figure 1. RMOR is a C program trans-

former, which inputs a pair consisting of a C program and a specification, and which

outputs a C program that is “armored” by the specification. The specification is writ-

ten in a textual format, that either can be programmed directly by a programmer, or it

can be generated from a graphical state machine specification in the RCAT specification

language. More specifically, RMOR takes as input a specification S in the RMOR speci-

fication language, and a C program P and produces a transformed program Q = M +PI
which is the combination of a monitor M generated from the specification S, and an

instrumented version PI of P. PI is P augmented with additional code that drives the

monitor M. Executing the resulting program Q corresponds to executing the original

program P, but with the monitor M constantly checking conformance to the specifica-

tion. In case the specification is violated, an error message is printed on standard output,

and in case specified, an error handling function is invoked.

2 Part of the work described in this paper was carried out at the Jet Propulsion Laboratory,

California Institute of Technology, under a contract with the National Aeronautics and Space

Administration. Part of the work was carried out at Kestrel Technology, under a contract with

the National Aeronautics and Space Administration.
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Fig. 1. Overview of RMOR

The specification consists of two parts: the behavioral specification expressed as a

set of state machines, or monitors as they are called, and an instrumentation specifica-

tion. The state machines contain states and transitions between states that are triggered

by the occurrence of events. Events are just abstract names. The instrumentation part

specifies how these abstract event names connect to the code and is the basis for the

automated program instrumentation. In the resulting instrumented code PI , calls to the

monitor M occur as calls of the M submit(int event) function. Events are repre-

sented as integers. The calls of this function are automatically inserted by RMOR at

locations defined by the instrumentation specification. The monitor M itself is a set of

synthesized C functions that check conformance to the state machines and which are

written into an rmor.c file that has to be compiled and linked together with the ap-

plication. An rmor.h header file is also generated that containts the events and RMOR

API prototypes (function signatures). The header file does not need to be included in

the user program under normal circumstances, but can be as explained later in case the

user program needs to explicitly refer to monitoring functions. The synthesized monitor

uses a fixed amount of memory, hence it does not use dynamic memory allocation.

RMOR is implemented using CIL (C Intermediate Language), a C program analysis

and transformation system [21]. CIL is programmed in OCAML, which consequently



also is the programming language in which RMOR is implemented. CIL is a high-level

representation along with a set of tools that permit easy analysis and source-to-source

transformation of C programs. The CIL tool parses a C program and generates an ab-

stract syntax tree annotated with type information. The generated tree represents a pro-

gram in a clean subset of C. CIL is very robust and has been applied to for example the

Linux kernel and GCC’s C torture testsuite and processes not only ANSI-C programs

but also those using Microsoft C or GNU C extensions. Consequently RMOR inherits

the same characteristics. CIL provides a driver which behaves as either the gcc or Mi-

crosoft VC compiler and can invoke the preprocessor followed by the CIL application.

The advantage of this script is that one can easily use RMOR with existing make files.

The RMOR system extends CIL with approximately 2500 lines of code.

3 The RMOR State Machine Language

3.1 An Example C Program

In order to illustrate the specification language, consider the following toy applica-

tion program about which properties will be formulated. The program, located in a file

main.c, defines a collection of functions supporting uplink of data from a planetary

rover to a space craft3:

char* header;
Connection open_connection(char* name) {...}
bool close_connection(Connection connection) {...}
void cancel_transmission(Connection connection) {...}
void write_buffer(Connection connection, int data) {...}
void commit_buffer(Connection connection) {...}
void acknowledge() {...}
void debug(char* str){...}

main(){
Connection c1,c2;
c1 = open_connection("connection1");
c2 = open_connection("connection2");
write_buffer(c1,100);
commit_buffer(c1);
close_connection(c1);

}

The program offers functions for opening and closing a connection between rover and

space craft. While the connection is open data can be written to a data buffer, and

finally committed, for which an acknowledgment is received and recorded with a call of

the function acknowledge. A transmission can also be cancelled, not requiring further

action. The program contains a global variable header, containing information about

the current connection. The main program illustrates an example scenario.

3 The example is fiction and does not represent an existing design.



3.2 Writing a Monitor

RMOR allows to specify properties about the execution order of function calls and

global variable accesses. RMOR monitors safety properties, usually formulated as “noth-
ing bad happens”, as well as termination-bounded liveness properties “something good
eventually happens before program termination”. Safety properties are checked each

time an event is submitted. Liveness properties are checked at the end of an execu-

tion when monitoring is terminated: at that point it is checked whether any outstanding

events have not happened that were expected to happen according to the requirements

represented by the monitors. In order to illustrate the RMOR notation a set of require-

ments will be modeled. Consider the following requirements R1, R2 and R3 about the

call-sequence of the functions in the above API. R1: “A connection is opened, accessed
zero or more times, and subsequently either closed or canceled. An access is either a
write operation or a commit operation”; R2: “The commit operation must be followed
by an acknowledgement before any other operation can be performed, except a can-
cellation”; R3: “It is illegal to have more than one connection opened at any time”.
These requirements can be formulated as several monitors, for example one for each

requirement, or they can be grouped into one monitor as follows.

monitor UplinkRequirements {
event OPEN = after call(main.c:open_connection);
event WRITE = after call(main.c:write_buffer);
event COMMIT = after call(main.c:commit_buffer);
event ACK = after call(main.c:acknowledge);
event CANCEL = after call(main.c:cancel_transmission);
event CLOSE = after call(main.c:close_connection);

initial state Closed {
when OPEN -> Opened;
when WRITE || COMMIT || ACK || CLOSE => error;

}

live state Opened {
when COMMIT -> Committing;
when CLOSE -> Closed;
when ACK => error;

}

next state Committing {
when ACK -> Opened;

}

super Active[Opened,Committing]{
when CANCEL -> Closed;
when OPEN => error;

}
}



The monitor introduces six events to be monitored and a state machine that any event

sequence observed during program execution must conform to. Each event is defined by

a predicate, denoting a set of statements in the program that satisfies it (a pointcut using

aspect-oriented terminology), and a directive indicating whether the event should emit-

ted before or after any statement satisfying the pointcut. As an example, the event OPEN

is associated with the pointcut call(main.c:open connection) which is matched by

any call of the function open connection defined in the file main.c. In the example

program there are in fact two such calls. The after directive requires the event to be

emitted to the monitor after each of these calls. It is in essence an instruction to RMOR

to instrument the code by inserting a call to the monitor after these two calls. Similarly

for the other events. Note that following aspect-oriented ideas, the program is oblivious

to the fact that it is getting instrumented.

The state machine itself consists of three basic states: Closed, Opened and

Committing. Each state is modeled as a named (the name of the state) block enclosed

by curly-brackets { . . . } containing all its exiting transitions. The Closed state is the

initial state, indicated with the state modifier keyword initial. In the Closed state,

two transitions are defined. The first transition states that the event OPEN brings the mon-

itor into the Opened state. Recall that an OPEN event occurs after any call of the function

main.c:open connection; The second transition states that if any of the events in the

set {WRITE,COMMIT,ACK,CLOSE} occurs, using the or-operator ‘||’, it is it is regarded

as an error – error is a special identifier denoting a built-in error state. The double ar-

row (=>) indicates a transition that leaves a token in the source state, in this case Closed,

such that also future violations of this property is detected. Such a transition is called

non-consuming since it does not consume the source token, as does the normal single

arrow consuming transition (->). Recall that state machines are non-deterministic.

The Opened state is a live state as indicated by the modifier keyword live, meaning

that this state must be left before program termination for this specification to be sat-

isfied. This specifically means that either a COMMIT event or a CLOSE event must occur.

An ACK event is not allowed to occur in this state. In the Committing state an ACK event

must occur as the next observable event, indicated by the next state modifier keyword.

This has as consequence that no other event can occur, except for a cancellation. The

latter exception is a consequence of the super state named Active defined at the end of

the monitor. This super state contains the two atomic states Opened and Committing
and has two exiting transitions. This is a shorthand for these exiting transitions con-

nected to each substate. The super state definition implies that when in any of the two

sub-states it is regarded as an error if an OPEN event occurs, and a CANCEL event brings

the monitor back to the initial Closed state.

3.3 Complex Pointcuts

Emissions of events to a monitor are inserted either before or after certain program

locations (joinpoints) identified by pointcut expressions occurring after the ‘=’ sign in

event definitions. Pointcut expressions can, similar to ASPECTJ and ASPECTC [2], be

used directly in event definitions, as we have seen above, or they can be defined and

given names in explicit pointcut declarations, using Boolean combinators similar to



those used on conditions. The following example illustrates this. Consider the addi-

tional requirement R4: “A write operation or an assignment to the header variable
(collectively referred to as an update) should be followed by a commit operation be-
fore the connection is closed, unless the transmission is cancelled. This, however, only
concerns main updates performed in the main.c file, ignoring updates made within any
debugging function”. In order to capture this requirement RMOR’s poincut language is

used to define the notion of a main update. The following monitor defines two poincuts,

one used to define the other, and an event that is defined in terms of the latter pointcut.

monitor Symbols {
pointcut Update = call(main.c:write*) || set(main.c:header);
pointcut MainUpdate = Update &&

within(main.c) && !withincode(*debug*);

event UPDATE = after MainUpdate;
}

The pointcut Update matches any program statement that is either: (i) is a call of a

function defined in main.c and with a name matching the pattern write*, meaning

having the name write as prefix, or (ii) is an update of the variable header declared in

main.c. The file patterns (the part before and including the ‘:’) are optional. Both file

names and function/variable names can be indicated as patterns using ”*” to represent

any sequence of symbols. The pointcut MainUpdate refines the first pointcut to only

concern those program statements occurring in the file main.c but not within any func-

tion with a name that contains the string debug. Finally, the event UPDATE is emitted

after any main update. Note that this monitor contains no state machine and is purely

introduced to define the pointcuts and the event. RMOR allows a monitor to import other

monitors to access their pointcuts and events, and the next monitor imports the just pre-

sented one to access the UPDATE event, and also imports the original monitor to access

further events.

monitor CommitUpdates {
import Symbols; // access UPDATE
import UplinkRequirements; // access COMMIT, CANCEL and CLOSE

state Start {
when UPDATE => DoCommit;

}

live state DoCommit {
when COMMIT -> Done;
when CANCEL -> Done;
when CLOSE -> error;

}

state Done{}
}



3.4 Error Handling

Our example program violates requirements R2 (a commit must be followed by an ac-
knowledgment before anything else), and R3 (no more than one open connection at a
time). Running the armored program produced by RMOR therefore causes two error

messages to be printed on standard output. It is possible to provide a call-back handler

function, which the monitor will call for each violation detected. This function must

have the following name and type:

void handler(char *monitor, char *state, int kind) {
... user defined code ...

}

The first argument indicates the name (a string) of the monitor in which the error was

encountered. The second argument indicates the name of the state it occurred in, and

finally the third argument indicates the kind of error (a number between 0 and 2): (0)
transition into an error state, (1) not leaving the next state before another event occurs,

and (2) terminating in a live state. In order for errors to be handled by the handler

function, the monitor must be declared with the handled modifier as follows:

handled monitor UplinkRequirements {
... as before ...

}

4 Elements of the RMOR Grammar

In this subsection elements of the grammar of RMOR are outlined, summarizing the

concepts introduced in the example. A specification consists of a sequence of monitors4:

<specification> ::= <monitor>*
<monitor> ::=

"handled"? "monitor" <monitor_name> "{" <declaration>* "}"
<declaration> ::=

<import_decl> | <pointcut_decl> | <event_decl> |
<state_decl> | <machine_decl>

An import declaration has the form:

<import-decl> ::= "import" <ident> ";"

Imports have the sole purpose of giving access to pointcuts and events from other mon-

itors. Imports have no semantics at the state machine level. The grammar rules for

pointcut declarations and pointcut expressions are as follows:

4 The meta symbol * means zero or more occurrences, and ? means zero or one occurrence.



<pointcut_decl> ::= "pointcut" <ident> "=" <pointcut_expr> ";"
<pointcut_expr> ::=

"call" "(" (<idpat1>":")?<idpat2> ")"
| "set" "(" (<idpat1>":")?<idpat2> ")"
| "within" "(" <idpat1> ")"
| "withincode" "(" (<idpat1>":")?<idpat2> ")"
| <ident>
| <pointcut_expr> "&&" <pointcut_expr>
| <pointcut_expr> "||" <pointcut_expr>
| "!" <pointcut_expr>
| "(" <pointcut_expr> ")"

<idpat1> ::= ("*" | letter|digit | "_" | "." | "-" | "/" )+
<idpat2> ::= ("*" | letter|digit | "_" )+

A poincut expression can specify a function call or a variable assignment, with idpat1
indicating the name of the file in which the called function or updated variable is de-

clared. The within pointcut matches statements occurring in files with names match-

ing the argument, and withincode matches statements occurring within functions with

names matching the argument. Beyond this, pointcuts can be referred to by name and

conjoined with Boolean operators. An event declaration has one of two forms:

<event_decl> ::=
"event" <ident> "=" ("before "|" after") <pointcut_expr> ";"

| "event" <ident> ("," <ident>) ";"

The event declarations shown this far are all of the first form. The second form is an

abstract event declaration. It just introduces an event name that then can be used in state

machines. However, no automated instrumentation is performed and it is the respon-

sibility of the user to manually instrument the program to emit these events using the

RMOR API. A state declaration can be of one of two forms:

<state_decl> ::=
<state_modifier>* "state" <ident> "{" <transition>* "}"

| "super" <ident> "[" <ident> ("," <ident>)* "]" "{"
<transition>*

"}"
<state_modifier> ::= "initial" | "anytime" | "live" | "next"
<transition> ::= "when" <cond> ("->"|"=>") <ident> ";"
<cond> ::=

"ANY" | <ident> | "!"<cond> | "(" <cond> ")"
| <cond> "&&" <cond> | <cond> "||" <cond>

The first form is the basic state definition: a list of state modifiers, the keyword state,

the name of the state, and a list of exiting transitions enclosed in a block. The second

form is a super state definition, with the name of the super state and the list of sub-states

in between [ . . . ] brackets. These sub-states must be defined within the same monitor

using the first form of state declaration. It is not possible to use another super state



as a sub-state. The super state also has a list of exiting transitions. An anytime state

always contains a token, even if an exiting transition is taken (state machines can be

non-deterministic). The same effect can be obtained by defining all exiting transitions

as non-consuming using the => arrow. A condition is a Boolean expression over event

identifiers and the ANY keyword, which in essence represents true, or ”any” transition.

In an attempt to offer the possibility of grouping together state machines in one

module it has been made possible to define several state machines inside a monitor.

Such state machines cannot define any symbols or perform any imports:

<machine_decl> ::= "machine" <ident> "{" <state_decl>* "}"

RMOR offers in addition an API of functions with which the user application can inter-

act with the monitors. These functions can for example be called from the handler. This

includes functions for resetting and stopping monitors, submitting events, and printing

monitor status for debugging purposes.

5 Implementation

OCAML [22] and its parser modules OCAMLLEX and OCAMLYACC were used to

implement the parser for the RMOR specification language. The generated monitors

in C utilize the SGLIB library [23], specifically double-linked lists for implementing

sets. The program instrumentation module was, as already mentioned, implemented in

OCAML on top of CIL [21].

5.1 Monitor Generation

The lexical scanning of RMOR specifications involves scanning of pointcut expressions,

which is a well-known problem in aspect-oriented programming implementations, re-

quiring the lexer to be state oriented, behaving differently in the normal and the pointcut
state. OCAMLLEX allows for such state orientation, permitting us to apply a high-level

parser generator for the task5. The program is parsed into an abstract syntax tree (AST),

which is then processed for two purposes: translation of state machines to monitors, and

instrumentation of the C code to emit events to the monitors (Section 5.2). The trans-

lator that produces state machines takes the AST as input and prints out the monitors

in the file rmor.c. There are three constraints that specifically influence how RMOR is

implemented: (i) monitors are allowed to be non-deterministic (a consequence for ex-

ample of the => transition arrow, useful for monitoring), meaning that a state machine

can be in more than one state at a given moment; (ii) dynamic memory allocation is

not allowed since monitors should be able to monitor embedded flight code as part of a

fault protection strategy, where only static memory allocation is allowed; (iii) a future

extension of RMOR should allow for events to be parameterized with data values, and

hence tokens in states should be able to carry values.

The first constraint requires each transition to produce a set of next states, computed

from the set of current states. The second constraint requires that these different sets

5 The ASPECTJ parser is for example not constructed using a parser generator.



cannot be allocated dynamically on the fly as new sets are built. Instead, all states are

allocated up front, and for each monitor is maintained three collections during next-

state computation: a list of free states, a set of current states, and a set of next states.

Each collection is modeled as a double-linked list. All states are initially stored in the

free list. The monitor subsequently just moves states between these three sets when a

new event arrives. At program termination it is checked that no tokens exist in live or

next states. The motivation for representing sets as linked lists of records, and not as

bitvectors, is the third constraint above, which requires data values to be part of state

tokens in an extension of the tool. This will be further discussed in Section 7.

5.2 Instrumentation with CIL

The instrumentation module is implemented using CIL’s object oriented visitor pattern

framework. RMOR defines a class that subclasses a predefined visitor class, overriding

a method for each kind of CIL construct that should be visited. CIL’s visiting engine

scans depth-first the structure of a CIL program and at each node executes the corre-

sponding method in the user-defined visitor. The code below shows part of the visitor

class defined for instrumentation. It overrides the method vinst : instr -> instr
list visitAction that is applied to every basic instruction in the C program (essen-

tially function calls and assignment statements, excluding composite statements, such

as loops). This function is expected to return a list of instructions, namely those that the

visited instruction is replaced with. The body of the function computes a list of advices

to be inserted (advice inserts), that if not empty is split into those to be inserted

before and after the instruction respectively.

class instrumentVisitor = object (self) inherit nopCilVisitor
...
method vinst (i : instr) : instr list visitAction =
...

let advice_inserts = match_instr ... i in
if advice_inserts = [] then

SkipChildren
else
begin

let (before,after) = create_before_after advice_inserts in
ChangeTo (before @ [i] @ after)

end
end

The instrumentation consists of inserting calls of the function M submit(int event)
before or after joinpoints matching the pointcuts associated with events. The function

M submit stores the submitted event for later reference in the state machines, and sub-

sequently calls the next-state function of each state machine.



6 Case Study

The Laboratory for Reliable Software at JPL has been developing a RAM File Sys-

tem (RAMFS) for use in future space missions. RAMFS will specifically be used as

a backup file system on the next Mars Rover, MSL (Mars Science Laboratory), with

launch date September-October 2009. MSL will be the biggest rover yet sent to Mars,

and will be three times as heavy and twice the width of the Mars Exploration Rovers

(MERs) that landed in 2004. RAMFS implements a thread-safe file system for flight

systems in volatile memory (memory that requires a power supply to maintain the stored

information). The main purpose of RAMFS is to provide a storage capability that can

be used when the disk- or flash-file system is unavailable, e.g., when a spacecraft is

in crippled mode, or in case there is not enough disk memory available. It is a project

goal to apply various testing and verification technologies to establish confidence in the

correctness of this file system [14]. Two different properties were formulated in RMOR

and checked against the system. Both properties were satisfied, and malicious manual

code modification caused them to be violated as expected.

Property 1: Matching Semaphore Accesses The first property, called MatchSem,

checks that semaphore operations are executed correctly: the semaphore must be re-

served and released in strictly alternating order. The specification further states that

once the semaphore has been reserved, it must eventually be released again. Reserv-

ing and releasing the semaphore is performed in the program respectively by calls of

functions osal sem take and osal sem give. The monitor is defined as follows.

monitor MatchSem {
event semtake = before call(osal_sem_take);
event semgive = after call(osal_sem_give);

state Start {
when semtake -> HaveLock;
when semgive -> error;

}

live state HaveLock {
when semgive -> Start;
when semtake -> error;

}
}

Property 2: Protected Memory Updates While the first property above states that

the semaphore is used correctly, the second property states that memory accesses are

correctly protected by the semaphore. That is, any access to memory must occur be-

tween a semtake and a semgive. Memory accesses come in two forms. The first

are updates to the list of free memory through memory allocations with the function

ramfs alloc pages, and memory freeing with the function ramfs free pages. The



second are updates to the memory pages themselves through two functions

ramfs update entry and ramfs update header. The monitor defines two pointcuts

free list update and page update, corresponding to these two kinds of calls.

monitor DataProtected {
import MatchSem ;
pointcut free_list_update =

call(ramfs_alloc_pages) || call(ramfs_free_pages);
pointcut page_update =

call(ramfs_update_entry) || call(ramfs_update_header);
event update = before free_list_update || page_update;

state Unsafe {
when semtake -> Safe;
when update -> error;

}

state Safe {
when semgive -> Unsafe;

}
}

Observations This case study demonstrated the ease with which a non-expert in RMOR

was able to quickly learn the specification language and formulate properties. Although

not seen as a limitation during the exercise, the need for events to carry data values

comes to the forefront in this example, specifically when it comes to the first property,

that the semaphore must be reserved and released in strictly alternating order. The

specification should ideally state that for a given semaphore S, its acquisition should be

followed by a release of this same S.

A different case study was performed using RCAT from which RMOR monitors

were generated as Büchi automata for an earlier version of RMOR. The case study was a

rover controller for the Rocky 8 rover, a research vehicle that is used at JPL to develop,

integrate, and demonstrate advanced autonomous robotic capabilities for future Mars

missions. Since the specification language used was RCAT and since monitors were

generated for an earlier version of RMOR, we shall not provide details about the example

or the specifications. It suffices to say that the specification concepts used were similar

to those of RMOR, and that the study supported the need for augmenting RMOR with

the ability to express time constraints, and the ability to model conditions (predicates)

on the state of the C program and use these as guards on transitions.

Concerning efficiency, the overhead naturally depends on the ratio with which mon-

itored function calls and variable accesses are performed in the monitored application

compared with the overall computation. Experiments showed that a single monitored

call of a function with empty body results in an order of magnitude slow down of that

call. Although monitored function calls usually constitute a small fraction of the over-

all computation, such overhead must be reduced using static analysis and algorithm

optimizations.



7 Conclusions and Future Work

The following three aspects are important for acceptance of a technology such as RMOR:

(i) convenience of the specification language; (ii) expressiveness of the specification

language; (iii) efficiency of monitoring. A contribution of the paper is to illustrate the

convenience of a state machine notation in combination with an aspect-oriented point-

cut language. Concerning expressive power of the specification language, it currently

only offers monitoring of propositional events. The notation should be extended with

the ability to parameterize events with data values, corresponding to arguments in mon-

itored functions, timers, and to generally enable C code to occur in the specification,

for example allowing C code to be executed as a result of state machine transitions. In

current work we are permitting this by directly extending ASPECTC [2] with state ma-

chines, utilizing ASPECTC’s already existing pointcut language. This work is carried

out using the SILVER extensible compiler framework [30]. Future work includes allow-

ing user defined temporal logic operators as shorthands for state machines. Specifically,

we plan to allow monitors to be parameterized with pointcuts. This will allow to define

temporal operators/specification patterns within the language as is done in the EAGLE

specification language [4], permitting very succinct specifications. We are furthermore

exploring the possibility of adopting the more expressive rule-based logic RULER [5]

as core logic, in which state machines form a special case. Efficiency can be obtained

by application of static analysis to reduce code instrumentation.
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